

大腸菌由来再構成型無細胞タンパク質合成系 (PUREfrex®) に適した鋳型DNAの配列の探索

Exploration of the template DNA sequence suitable for the *E.coli*-based reconstituted cell-free protein synthesis system (PURE frex®)

金森 崇、布施(村上) 朋重、松本 令奈(ジーンフロンティア(株))

PURE*frex*

PURE frex is based on the PURE system technology.

The PURE system is a reconstituted cell-free protein synthesis system, which consists only of purified factors necessary for transcription, translation and energy regeneration.

Advantage

- Low level of contamination
- Easy to adjust composition
- Usable of PCR product as a template DNA

Example of protein synthesis

Why is the synthesis efficiency different?

- amino acid sequence
- nucleotide sequence

•

5' UTR of the template DNA for PURE frex

Currently used sequence (derived from T7 gene 10 UTR)

SD (Shine-Dalgarno) sequence binds 3'terminus of 16S rRNA and localizes mRNA to the start position of translation.

SD and **Spacer**

AT-rich (Epsilon) and SD

SD sequence	No	Short	Currently used	Long	
(-) Epsilon	×	×	\triangle	\triangle	
(+) Epsilon	X	\bigcirc	0	\bigcirc	

AT-rich

AT-rich region	No	< 10 nt	> 12 nt
	X	Δ	0

Stemloop

Stemloop region	3 nt	6 nt	
	Δ	0	

Stemloop and AT-rich

Other proteins

Summary

Summary

Shorter 5' UTR

Easier to prepare the template DNA by PCR